☐Comparison Chart of the chemical components and characteristics used in the material | tion | Standard Standard | | | in Ch | emica | I Con | npone | nts(9 | %) | Comparison of characteristics | | | SS | | |------------------|--------------------------------------|---------------------------|--------------|-------|-------|----------------|-------|---------------|----------------|-------------------------------|--------------------|-----------|-----------------------|---| | Classification | JIS | AISI | С | Cr | Мо | W | > | Со | Ta
Ti
Nb | Abrasion resistance | Heat
resistance | Toughness | Actual
Hardness | Applications | | High Speed Steel | SKH51 | M2 | 0.85 | 4 | 5 | 6 | 2 | | | | | | HRC
64
\$
66 | Cutting
standard
material,
requiring
toughness | | | SKH55 | M35 | 0.90 | 4 | 5 | 6 | 2 | 5 | | | | | 65
\$
67 | Cutting heavy
duty material,
requiring
toughness | | | SKH59 | M42 | 1.10 | 4 | 9.5 | 1.5 | 1 | 8 | | | | | 66
\$
68 | Cutting heavy
duty material,
requiring
toughness
at high speed | | | MPM
(Powder high)
(speed steel | | 1.30 | 4 | 5 | 6 | 3 | 8 | | | | | 66
\$
68 | Cutting
super hard
to machine
material | | se | K10 | | 5
\$
6 | | | 84
\$
90 | | 4
\$
7 | 0
\$
3 | | | | HRA
92.0 | For cutting hard
material that is
required wear
and abrasion
resistance and
heat resistance. | | Carbide Grades | K20 | | 5
5
6 | | | 83
\$
89 | | 5
\$
8 | 0
\$
3 | | | | 91.0 | For cutting
hard material
that is required
toughness
against | | | Z10 | Micro
grain
carbide | 5
6 | | | 76
\$
89 | | 5
\$
15 | 0
\$
3 | | | | 92.0 | chipping. | ## ☐ Carbide grades recommendation | | JIS | Performance range | Actual hardness | Features / Applications | | | | | |-------------------|-----|---------------------|-----------------|--|--|--|--|--| | | K10 | Abration resistance | HRA
92.0 | Used for standard cutting of irons. It also lasts longer than other carbide grades for steel cutting when intermissive wet-milling of steel, sensitive feed, and grooving shallow depth. | | | | | | | K20 | Toughness | 91.0 | Best used when cutting non-ferrous metals in which small wedge angle and toughness is required. | | | | | | in carbide | Z10 | Abrasion resistance | 92.0 | The alloys used ultrafine powder of WC below 1.0μ m. Best used when cutting requires sensitive feed, thin shallow of grooving, and high precision at low speed. Toughness is retained even though it keeps the hardness of the | | | | | | Micro grain | Z20 | Toughness | 91.0 | normal carbides because of micro structure. Best fit for precision machining of tools with small diameter and thickness. | | | | | | Impact resistance | V40 | Abrasion resistance | 88.0 | The alloys used medium and coarse powder of WC. Best used for the processing that needs the characteristic that is toughness, impact resistance. | | | | | | Impact re | V50 | Toughness | 87.0 | | | | | |